Finite Sample Confidence Regions for Parameters in Prediction Error Identification Using Output Error Models

نویسندگان

  • Arnold J. den Dekker
  • Xavier Bombois
چکیده

The purpose of this paper is to evaluate the reliability in finite samples of different methods for constructing probabilistic parameter confidence regions in prediction error identification using Output Error (OE) models. The paper presents alternatives to the ”classical method” of constructing asymptotically valid confidence regions, which is based on the asymptotic statistical properties of the parameter estimator. It is shown that if alternative test statistics are used, more reliable confidence regions for finite samples can be obtained. Particularly, it is demonstrated that the use of a test statistic based on the Fisher score allows the construction of exact confidence regions for finite samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Simulation and ANFIS Prediction of Dimensional Error Effect on distribution of BPP/GDL Contact Pressure in PEM Fuel Cell

Distribution of contact pressure between the bipolar plate and gas diffusion layer considerably affect the performance of proton exchange membrane fuel cell. In this regard, an adaptive neuro-fuzzy inference system (ANFIS) is developed to predict the contact pressure distribution on the gas diffusion layer due to dimensional errors of the bipolar plate ribs in a proton exchange membrane fuel ce...

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

Finite sample properties of system identification methods

In this note, we study the quality of system identification models obtained using the standard quadratic prediction error criterion for a general linear model class. The main feature of our results is that they hold true for a finite data sample and they are not asymptotic. The main theorems bound the difference between the expected value of the identification criterion evaluated at the estimat...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Two-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output

‎In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed‎. ‎In this regard‎, ‎ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients‎. . ‎To evaluate the proposed regression model‎, ‎we introduce the fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008